Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333764

RESUMO

Lipid oxidation in food emulsions is mediated by emulsifiers in the water phase and at the oil-water interface. To unravel the physico-chemical mechanisms and to obtain local lipid and protein oxidation rates, we used confocal laser scanning microscopy (CLSM), thereby monitoring changes in both the fluorescence emission of a lipophilic dye BODIPY 665/676 and protein auto-fluorescence. Our data show that the removal of lipid-soluble antioxidants from mayonnaises promotes lipid oxidation within oil droplets as well as protein oxidation at the oil-water interface. Furthermore, we demonstrate that ascorbic acid acts as either a lipid antioxidant or pro-oxidant depending on the presence of lipid-soluble antioxidants. The effects of antioxidant formulation on local lipid and protein oxidation rates were all statistically significant (p < 0.0001). The observed protein oxidation at the oil-water interface was spatially heterogeneous, which is in line with the heterogeneous distribution of lipoprotein granules from the egg yolk used for emulsification. The impact of the droplet size on local lipid and protein oxidation rates was significant (p < 0.0001) but minor compared to the effects of ascorbic acid addition and lipid-soluble antioxidant depletion. The presented results demonstrate that CLSM can be applied for unraveling the roles of colloidal structure and transport in mediating lipid oxidation in complex food emulsions.

2.
J Phys Chem B ; 113(12): 3704-8, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19673130

RESUMO

We investigated by means of polarization microscopy the influence of a magnetic field on the shape and director field of nematic droplets in dispersions of plate-like colloidal particles. To interpret the experimental observations, we put forward a simple theory in which we presume strong anchoring and a sphero-cylindrical droplet shape. This model allows us to extract values for the interfacial tension and the splay elastic constant from the experimental data.

3.
Phys Rev Lett ; 99(6): 066104, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930844

RESUMO

We show that the equilibrium size of single-layer shells composed of polyoxometalate macroions is inversely proportional to the dielectric constant of the medium in which they are dispersed. This behavior is consistent with a stabilization mechanism based on Coulomb repulsion combined with charge regulation. We estimate the cohesive energy per bond between macroions on the shells to be approximately -6kT. This number is extracted from analysis based on a charge regulation model in combination with a model for defects on a sphere. The value of the cohesive bond energy is in agreement with the model-independent critical aggregate concentration. This observation points to a new class of thermodynamically stable shell-like objects. We point out the possible relevance our findings have for certain surfactant systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...